Compensating Diffusion Bias of Quantitative \(T_2 \) on High-Field MRI Scanners

N. Bnaiahu\(^1\), E. Wilczynski\(^1\), N. Omer\(^1\), T. Blumenfeld-Katzir\(^1\), S. Levy\(^1\), N. Ben-Eliezer\(^{1,2}\)

\(^1\)Tel Aviv University, Tel Aviv, Israel
\(^2\) Center for Advanced Imaging Innovation and Research, NY, USA

Introduction: In high-field scanners imaging gradients (RO, PE and SS) are significant, leading to amplification of diffusion weighting and spurious attenuation of the signal, especially in spin-echo (SE) based acquisitions where the effect of diffusion accumulates along the echo train. Thus, \(T_2 \) mapping on preclinical scanners is challenged by both diffusion and stimulated echoes. Furthermore, different parameter sets will produce different diffusion and stimulated-echoes signal bias, impairing reproducibility of measured values. In this work we implement diffusion correction of SE and multi echo SE (MESE) protocol data in the echo modulation curve (EMC) algorithm [1] to unravel the unbiased \(T_2 \) values of the tissue.

Methods: Effective b-value [2,3] is developed according to the applied MSME sequence gradients, it is evaluated per echo based on the subset of coherence pathways that contributed to the signal [4], thus incorporating the effects of stimulated echoes in the diffusion attenuation assessment.

\[
\text{effective } b \text{ - value} = \gamma^2 I = \gamma^2 \int_0^t \left(\int_0^t g(t')dt' \right)^2 dt
\]

Eq.1

A phantom containing concentrations of MnCl\(_2\) was imaged on a 9.4T Bruker Biospin. Spectroscopy was performed to achieve unbiased \(T_2 \) values. SSE and MSME imaging sequences were applied with varied parameters. ADC: \(2.29 \times 10^{-5} \) cm\(^2\)/s. MSME data was fitted using the EMC algorithm after the diffusion attenuation was corrected. An in-vivo scan was conducted on a 7T Bruker Biospec with MSME protocol and high-resolution scan parameters.

Results: For the 0.02 mM tube, uncorrected results were up to 76% lower than spectroscopy results, after correction max deviation was lowered to 4%; CV value was reduced from 24% to 4% (see Fig. 1 for all concentrations). In-vivo results: corrected \(T_2 \) values were raised by 20% in the hippocampus, and by 11% in the cortex and corpus callosum.

Conclusion: Correction is necessary for high-field / high-resolution qMRI since diffusion effect intensifies as resolution increases. The suggested solution improves accuracy, eliminates the variability observed at different resolutions and slice thicknesses and provides reproducible, steady \(T_2 \) values.